POV-Ray

The Persistence of Vision Raytracer (POV-Ray).

This is the legacy Bug Tracking System for the POV-Ray project. Bugs listed here are being migrated to our github issue tracker. Please refer to that for new reports or updates to existing ones on this system.

IDCategoryTask TypeReported InPrioritySeveritySummaryStatusProgressDue In Version  asc
248Parser/SDLFeature RequestNot applicableVery LowLowImplement mechanism to compute direction of a splineTracked on GitHub
0%
Future release Task Description

The SDL currently provides no way to compute the exact direction of a spline at a given location, even though mathematically this is a piece of cake: The first-order derivative of any spline section gives you the “speed” as a vector function, and is trivial to compute for polynomial splines (which are behind all spline types that POV-Ray supports); the normalized “speed” vector, in turn, gives the “pure” direction.

For exact direction/speed computations, I propose to extend the SDL invocation syntax as follows to allow for evaluating a spline’s derivative:

    SPLINE_INVOCATION:
        SPLINE_IDENTIFIER ( FLOAT [, SPLINE_TYPE] [, FLOAT] )

or

    SPLINE_INVOCATION:
        SPLINE_IDENTIFIER ( FLOAT [, FLOAT] [, SPLINE_TYPE] )

where the second FLOAT will specify the order of derivative to evaluate (defaulting to 0). In order to compute the position, direction, and acceleration of an object traveling along a certain spline, one could then for instance use:

    #declare S        = spline { ... }
    #declare Pos      = S(Time);
    #declare VSpeed   = S(Time,1);
    #declare VAccel   = S(Time,2);
    #declare Dir      = vnormalize(VSpeed);
    #declare Speed    = vlength(VSpeed);
    #declare AccelDir = vnormalize(VAccel);
    #declare GForce   = vlength(VAccel) / 9.81;

Alternatively, a mechanism may be devised to create a spline representing another spline’s derivative; however, it would be debatable whether the syntax should be parameter-like (being an added information that could be overridden again when creating other splines from such a derived spline), or operation-like (converting the spline), and in the latter case how it should affect spline type (and consequently control points); so the spline invocation parameter approach might be more straightforward, with less potential surprises for the user.

275Light sourceDefinite Bug3.70 RC7Very LowLowcircular area lights exhibit anisotropyTracked on GitHub
50%
Future release Task Description

circular area lights exhibit some anisotropy, being brighter along the diagonals than on average, as can be demonstrated with the following scene:

//+w800 +h800
#version 3.7;
global_settings{assumed_gamma 1}
plane{-z,-10 pigment{rgb 1} finish{ambient 0 brilliance 0}}
disc{0,z,10000,0.5}
camera{orthographic location z look_at 10*z up y*12 right x*12}
light_source{-10*z rgb 10 area_light 10*x 10*y 257 257 adaptive 4 circular}
287Light sourceDefinite Bug3.70 RC7Very LowLowarea_illumination shadow calculationTracked on GitHub
50%
Future release Task Description

not sure if this is something needing further work or an intended effect.

Shadows from and area light with area_illumination on seem to follow the same shadow calculation as a standard area light by giving more weight to lights near the center of the array. I would assume the shadows would be calculated similarly to individual lights in the same pattern as the array by evenly distributing the amount of shadow equally for each light. But this is not what I see.

The code sample below when rendered with scene 1 will show shadows grouped near the center from the area light with area_illumination. If scene 1 is commented out and scene 2 is uncommented then rendered, you will see evenly distributed shadows from individual lights. Area lighting with area_illumination I would assume should give a result identical to scene 2. If scene 1 is rendered with area_illumination off, the shadow calculation is exactly the same as with area_illumination on.

example images rendered on win32 XP

#version 3.7;

global_settings {
 ambient_light 0
 assumed_gamma 1
}

camera {
  location <0, 3, -5>
  look_at <0, 2, 0>
}

background { rgb <.3, .5, .8> }
plane { y,0 pigment { rgb .7 } }
torus { 1.5,.1 rotate 90*x translate 4*z pigment { rgb .2 } }
plane { -z,-7 pigment { rgb .7 } }

/*
// scene 1
light_source{
  y
  1
  area_light 3*x, z, 7, 1
  area_illumination on
}
union {
 sphere { 0,.05 }
 sphere { .5*x,.05 }
 sphere { x,.05 }
 sphere { 1.5*x,.05 }
 sphere { -.5*x,.05 }
 sphere { -x,.05 }
 sphere { -1.5*x,.05 }
 translate y
  hollow pigment { rgbt 1 } interior { media { emission 10 } }
}
// end scene 1
*/


// scene 2
#declare Light = light_source {
  0
  1/7
  looks_like { sphere { 0,.05 hollow pigment { rgbt 1 } interior { media { emission 10 } } } }
}

union {
 object { Light }
 object { Light translate .5*x }
 object { Light translate x }
 object { Light translate 1.5*x }
 object { Light translate -.5*x }
 object { Light translate -x }
 object { Light translate -1.5*x }
 translate y
}
// end scene 2

Showing tasks 101 - 103 of 103 Page 3 of 3 - 1 - 2 - 3

Available keyboard shortcuts

Tasklist

Task Details

Task Editing