|
7 | Radiosity | Unimp. Feature/TODO | 3.70 beta 32 | Low | Medium | Re-implement Radiosity render abort/continue support | Tracked on GitHub | |
|
Task Description
For proper render abort/continue support, radiosity cache data must be written to (or read from) disk even if the user does not explicitly opt to have a sample data file written/read. This feature has temporarily been dropped from 3.7 beta and is still pending re-implementation.
To meet high-reproducibility requirements in conjunction with SMP operation, it may be necessary to extend the 3.6 radiosity cache file format.
|
|
70 | Photons | Unimp. Feature/TODO | 3.70 beta 34 | Low | High | load/save photons should be controlled via command line | Tracked on GitHub | |
|
Task Description
Just like radiosity load/save, the photon mapping load/save mechanism should be moved to the frontend and controlled via command-line switch, instead of being SDL-driven in the backend.
|
|
20 | User interface | Feature Request | 3.70 beta 32 | Very Low | Very Low | render window behavior | Tracked on GitHub | |
|
Task Description
When changing the behavior of the render window, “Keep above main”, requires restarting the POV editor to take effect. It would be nice either to get a warning to restart, or to get it to work without restarting.
|
|
26 | Geometric Primitives | Definite Bug | 3.61 | Very Low | Low | Artifacts rendering a cloth which has two-side textures | Tracked on GitHub | |
Future release |
Task Description
Dear PovRay maintainers and developers, congratulations for your great RayTracer!
We think that we have found a bug while we were rendering a piece of cloth.
In this piece of cloth were defined two textures, one for one side and one for the another side:
texture { mesh_tex0_0 }
interior_texture { mesh_tex0_1 }
these definitions in their original context.
We have found some artifacts in the final rendering, in concrete near some wrinkles, please, look at the attached file “render_artifacts.tga”, I have painted a big green arrow near the artifacts, maybe you’ll need to do a zoom to see them more accurately.
They are as though the texture of the other side was painted in the incorrect side.
Fortunately, we have a patch to fix this bug (thanks to Denis Steinemann, he made the implementation for PovRay 3.5, so I have adapted these changes to release 3.6.1)
Although we have found this bug in the Windows and Linux 3.6.1 releases, the patch was generated in Linux (using the source code release of “povray-3.6.1”).
To apply this patch, inside the parent folder of the directory “povray-3.6.1” execute:
patch -p0 < other_side_artifacts.patch
And the “povray-3.6.1” will be patched and you will get a console output like this:
patching file povray-3.6.1/source/lighting.cpp
patching file povray-3.6.1/source/mesh.cpp
patching file povray-3.6.1/source/render.cpp
We don’t know if this “hack” is enough smart to apply in the next release, but we think that it fixes the bug (the artifacts dissapear).
Best regards and thank you very much for your great RayTracer!
|
|
27 | Other | Feature Request | 3.70 beta 32 | Very Low | Low | Add texture support to background statement | Tracked on GitHub | |
Future release |
Task Description
Adding full texture statement support to the background statement (with a scale of 1/1) aligned with the image_map direction of an image would allow i.e. specifying an image as background easily.
|
|
28 | Frontend | Feature Request | 3.70 beta 32 | Very Low | Low | #debug message not displayed. | Tracked on GitHub | |
Future release |
Task Description
The #debug message stream is only being flushed when it hits a newline character, instead of after each #debug statement. This means that some final strings don’t show up.
#debug "This line prints,\n but this line doesn't."
|
|
41 | Other | Feature Request | 3.70 beta 32 | Very Low | Low | improve command-line parsing error messages | Tracked on GitHub | |
|
Task Description
POV-Ray 3.6, upon encountering problems when parsing command line and/or .ini file options, would quote the offending option in the error message.
POV-Ray 3.7 currently just reports that there is some problem with the command line, without providing any details. I suggest changing this, as the information may be helpful at times.
|
|
42 | Other | Definite Bug | 3.70 beta 32 | Very Low | Medium | command line parameters are not parsed properly on Unix | Tracked on GitHub | |
|
Task Description
POV-Ray does not follow common practice on command-line handling; for instance:
povray +i"My File"
entered on a Unix shell would be passed to POV-Ray as
povray
+iMy File
(each line representing a distinct parameter here), which POV-Ray would further dissect, interpreting it as
povray
+iMy
File
To achieve the desired effect, one would actually have to quote the string twice:
povray +i"'My File'"
which the shell would translate to
povray
+i'My File'
which POV-Ray would interpret as
povray
+iMy File
In both cases, this is obviously not what a Unix user would expect.
The further dissecting of individual command-line parameters may have had its valid roots in the peculiarities of DOS’ command-line handling, but to my knowledge all major contemporary operating systems follow a concept akin to Unix, passing a list of parameters instead of a monolithic command line, and burdening the respective command shells with the task of dissecting command lines into parameters.
Therefore I suggest to disable this anachronistic feature in favor of contemporary standards; a compiler flag might be used to allow for easy re-enabling of the feature, for compiling POV-Ray on exotic targets.
- edit -
It has been pointed out that the described behaviour differs from 3.6, so I’m promoting this to a bug and changing the title.
|
|
44 | Radiosity | Feature Request | All | Very Low | Low | Improve Normals Handling in Radiosity | Tracked on GitHub | |
Future release |
Task Description
Currently, radiosity does not make use of the fact that pertubed normals would theoretically just require a different weighting of already-sampled rays, leading to the following issues:
Honoring normal pertubations in radiosity leads to an increased number of samples, slowing down sample cache lookup.
The increased number of samples is generated from a proportionally higher number of sample rays, slowing down pretrace even further.
Low-amplitude pertubations tend to be smoothed out; “reviving” these is only possible by increasing the general sample density.
Handling of multi-layered textures with different normal pertubations is currently poorly implemented.
As a solution, I propose to store for each radiosity sample not only the resulting illumination for a perfectly unpertubed normal, but from the same set of sample rays also compute the illumination for an additional set of about a dozen standardized pertubed-normal directions, and interpolate among these when computing the radiosity-based illumination for a particular point that has a pertubed normal.
For backwards compatibility, this method of dealing with pertubed normals in radiosity might be activated by a different value for the “normal” statement in the radiosity block, say, “normal 2”.
|
|
47 | Preview | Possible Bug | 3.70 beta 32 | Very Low | Low | Render Preveiw window can become disabled | Tracked on GitHub | |
|
Task Description
If a render is continued with the +c option and the render had completed, the render preview window will disappear and the show/hide render window button will be grayed. Even after the scene is modified and the command line options have been changed, the show/hide button will still be grayed.
Opening or changing to another scene and rendering will not restore the button, nor will rendering with +d. However, if a trace is started using -d, halted, then continued using +d (or allowed to finish completely with -d and a new one is started using +d), then the preview window is restored.
This behavior is different from 3.6.1, which correctly always showed the preview window (since +d is default) unless -d was specified.
|
|
50 | Runtime error | Possible Bug | 3.70 beta 32 | Very Low | Medium | Frequent segfaults with photon scenes | Tracked on GitHub | |
|
Task Description
I observe frequent segfaults with POV-Ray 3.7 betas when rendering scenes using photons:
Segfaults are sporadic but frequent (occurring in roughly 50% of all photon renders).
|
|
60 | Geometric Primitives | Definite Bug | 3.70 beta 34 | Very Low | Medium | Artifacts using prism in CSG | Tracked on GitHub | |
Future release |
Task Description
Using prisms in intersecion or difference CSG objects may cause artifacts in POV-Ray 3.6.2 as well as 3.7.0.beta.34, as demonstrated by the following code:
camera {
right -x
up y*image_height/image_width
location <-24,19,12>
look_at <0,0,0>
}
light_source { <100,200,100> color rgb 1 }
plane { y, -2 pigment { color rgb 1 } }
#declare KeyValue = 1.366; // pick any you like
difference {
prism {
linear_sweep -0.5,0.5, 4
<-3,20-17>,
<-3,KeyValue>,
<-6,-3>,
<-0,-5>
}
intersection {
cylinder { <-7,-0.51,1>, <-7, 0.51,1>, 4.0 }
plane { z, KeyValue }
}
pigment { color rgb 0.5 }
}
Apparently the surface of the other object becomes visible when it exactly coincides with a vertex of the prism; probably there is a failure of the inside() test for such values.
|
|
65 | Parser/SDL | Feature Request | 3.70 beta 34 | Very Low | Low | Add support for vectors with functions | Tracked on GitHub | |
Future release |
Task Description
Being able to have functions operate on vectors would be pretty nice to have.
|
|
71 | User interface | Unimp. Feature/TODO | 3.70 beta 34 | Very Low | Low | raise warning when command line option has no effect | Tracked on GitHub | |
|
Task Description
Warnings should be raised when a command line option has no effect, for example...
pvengine +am
is legal, but without the number after it, it has no effect.
pvengine +am7
should be an error, and also raises no warnings.
|
|
79 | Source code | Feature Request | 3.70 beta 35a | Very Low | Low | Full-Featured Test-Scene to check the correctness of po... | Tracked on GitHub | |
Future release |
Task Description
Hi,
it would be nice if there exists a test scene (not a benchmark) which has a high coverage of povray source and can be used as correctness validation of povray. It schould be produce an image which can be compared to a golden reference image.
It may be also possible to create a regression test suite which does automatic comparision of the render results.
|
|
81 | Geometric Primitives | Definite Bug | 3.62 | Very Low | Medium | sphere_sweep generating artifacts | Tracked on GitHub | |
|
Task Description
I’m running POV-Ray for (64 bit) Windows v3.62 on (64 bit) Windows Vista
This pov file:
#include "colors.inc"
#include "metals.inc"
light_source { <6, 9, -21> color White }
camera { location <0, 0, -3> look_at <0, 0, 0> }
sphere_sweep {
cubic_spline
6
<-2.0, 0, 0> 0.05
<0.000,0,0> 0.2
<0.025,0,0> 0.2
<0.050,0,0> 0.2
<0.075,0,0> 0.2
<3.0,0,0> 0.2
pigment { color White }
}
Produces two strange artifacts: A disk at the center of the sweep, and a faint “halo” or veil which shows as 4 faint hyperbolas centered around the origin.
I have tried tweaking tolerance (for no other reason than I saw that someone else was tweaking it to solve a problem) but this does not seem to change things.
For a look at MY result when I run this, view this image:
Alain reports the same behavior in the latest version: “It’s still there with the latest version: 3.7 beta 35a.” This MAY move the status to “confirmed”, but I can’t do that
Someone else says that changing the scale (!) “solves” the problem by moving the disk and the halo offscreen, but that sounds like a bad idea to me.
-Jeff Evarts, first-time POVRay bug reporter
|
|
96 | Texture/Material/Finish | Feature Request | Not applicable | Very Low | Low | User-defined warps | Tracked on GitHub | |
Future release |
Task Description
User-defined warps would be nice to have, something along the lines of:
warp {
function { MyFnX(x,y,z) } // function to compute pattern-space x-coordinate from object-space <x,y,z> coordinate
function { MyFnY(x,y,z) } // ditto for pattern-space y coordinate
function { MyFnZ(x,y,z) } // ditto for pattern-space z coordinate
}
// a displacement warp:
warp {
function { x + MyFnX(x,y,z) }
function { y + MyFnY(x,y,z) }
function { z + MyFnZ(x,y,z) }
}
|
|
106 | Distribution | Unimp. Feature/TODO | 3.70 beta 37 | Very Low | Low | Update sample scenes and include files for POV-Ray 3.7 ... | Tracked on GitHub | |
|
Task Description
Most sample scenes and include files were designed at times when POV-Ray did not to any proper gamma handling, or still used the inferior 3.6 “assumed_gamma” mechanism.
All the scenes and include files should be reviewed, and updated to fit the new 3.7 gamma model.
The primary task will probably be gamma-adjusting literal color values and ambient parameters; I suggest using macros (which ideally should be defined in an include file) to be set according to the #version statement, so the scene/include file could be kept compatible with older versions.
|
|
108 | Parser/SDL | Feature Request | 3.70 beta 37 | Very Low | Low | motion_blur feature similar to Megapov version | Tracked on GitHub | |
Future release |
Task Description
motion_blur which is a simple and effective feature to use in Megapov to simulate motion blur of, e.g. bird wings, propellers or running animals, would be a neat addition to version 3.7 and later.
In Megapov, the feature requires a line of code in the global_settings{} e.g.: motion_blur 10, 2 and a declaration for the moving object. e.g.:
motion_blur {
type 0
object{MyObject material{MyMaterial rotate x*clock*2}}
rotate x*clock*10
}
type represents several types of pre-defined motions.
Thanks,
Thomas
|
|
115 | Texture/Material/Finish | Feature Request | 3.70 beta 37a | Very Low | Low | More cutaway_textures | Tracked on GitHub | |
Future release |
Task Description
Think this is still a problem. See the attached scene file. Find the WindowFrameSegment declaration for more info. The scene as-is shows the problem (SOME portions of the difference inherit the color of the room) the window opening is scaled larger to show that they AREN’T touching. The problem goes away when (in WindowFrameSegment) the 1st occurrence of the applied texture is commented out and the 2nd occurrence is uncommented, and cutaway_textures is commented out.
|
|
118 | Light source | Feature Request | 3.70 beta 37a | Very Low | Low | More efficient handling of fading lights | Tracked on GitHub | |
3.71 release |
Task Description
Currently, fading light sources are used for lighting and shadow calculations even when so far away as to no longer have any effect on the outcome. The proposed solution is to add a new keyword fade_cutoff_distance which tells povray to ignore the light source when alluminating a point at larger distance.
A sample implementation is provided in the attached files. These changes are still based on beta 34 as sources for the current beta are not yet available, and starting to merge changes to beta 35 only at this time didn’t seem worth the effort. Also, please disregard, changes in the CVS header comments (I also use CVS locally for managing source files).
Further considerations regarding this feature:
- For special effects this feature can also be used if the light source does not actually use fading. On the other hand, cutting the light at some distances can be considered an extreme form of fading which may justify the keyword name anyhow.
- Depending on how FS#46 is implemented, the test for cutoff may then be needed at another location as well.
- The default value currently is 0 (or *no* cutoff distance). For #version 3.7 of higher, the default could be chosen automatically based on the light source intensity and adc_bailout, although it may then need to be overriden by the user for extreme pigments.
|
|
127 | Parser/SDL | Feature Request | 3.70 beta 37a | Very Low | Low | Expandable arrays | Tracked on GitHub | |
Future release |
Task Description
Currently, arrays are of a fixed size. You can’t add or remove items to/from an array. I think it would like arrays to be expandable with no fixed and pre-determined size.
|
|
131 | Other | Feature Request | 3.70 beta 37a | Very Low | Low | Ability to change the order of editor tabs by dragging ... | Tracked on GitHub | |
Future release |
Task Description
See Notepad++ or EditPad Lite for examples.
It would be nice to be able to drag tabs in the editor window to change their order, so as to group opened files together by relevance for instance.
|
|
138 | User interface | Feature Request | 3.70 beta 37a | Very Low | Low | "Rename" option in File menu | Tracked on GitHub | |
|
Task Description
Would be great if there were a “Rename” option in the editor File menu to rename the current file name. Otherwise, you have to close the file, rename it in file manager, then open the file again, thus loosing the current tab position and undo history for the file.
|
|
140 | Platform-specific | Feature Request | 3.70 beta 37a | Very Low | Low | "Reload" option in File menu | Tracked on GitHub | |
|
Task Description
Would be great to have a “Reload” option in the File menu to manually reload the current file from disk, discarding all subsequent changes since the last save.
|
|
142 | Texture/Material/Finish | Feature Request | 3.70 beta 37a | Very Low | Low | camera_view pigment from MegaPOV | Tracked on GitHub | |
Future release |
Task Description
I probably don’t have to explain why the camera_view pigment in MegaPOV was important, but I will list some reasons anyway:
1) post-processing could be performed in-scene 2) new types of focal blur effects could be created 3) feedback fractals were possible
I’m sure there are many others, as this is one of those features that has undetermined potential!
|
|
151 | Runtime error | Possible Bug | 3.70 beta 37a | Very Low | Low | No way to cancel save while parsing, never ending error... | Tracked on GitHub | |
|
Task Description
On Windows, when I try and save a file while it is being parsed prior to rendering, I get an error, “Failed to save file: The operation completed successfully”, with a single OK button to click. Despite the weird wording, I’m OK with that.
However after clicking OK I get the error, “Failed to save file ‘...’“, with three buttons: Cancel, Try Again, Continue. Not sure what “Continue” means in this context, given that the possibilities would seem to be covered by the other two buttons. Whatever.
Also, sometimes I get a message with only a single “Retry” button. Not sure what the exact message was.
Anyway, the real problem is that, regardless of which button I press, the program continues to spawning the same error message endlessly. Luckily there is a delay between them, but still it would be nice to have at least one of the three buttons *stop* POV-Ray from asking me again.
Also, once the program finishes parsing the file and it becomes possible once again to save the file, it does nothing. I.e. it doesn’t save the file. So what’s the point of the message and all the options? Why not just say, “Unable to save the file, file is parsing” and be done with it?
I think I recall the same behavior in 3.6.2, so it’s nothing new that’s been introduced.
|
|
172 | Image format | Unimp. Feature/TODO | 3.70 beta 39 | Very Low | Low | Re-implement progressive image output | Tracked on GitHub | |
Future release |
Task Description
With previous versions of POV-Ray, it was possible to turn off display output, but still assess the output during render by viewing the output file as it was progressively generated. This allowed e.g. to run a long render on a remote machine as a background process, and check the output from time to time via FTP or similar.
|
|
177 | Light source | Feature Request | 3.70 beta 39 | Very Low | Low | Add support for conserve_energy to shadow computations | Tracked on GitHub | |
|
Task Description
The following scene gives a comparison of current conserve_energy handling in standard shadow computations vs. photons.
Note how the rather highly reflective slabs fail to cast shadows, except where the photons target sphere enforces computation of shadow brightness to be done by the photons algorithm.
For more realistic shadowing without the need to enable photons, I suggest do add proper conserve_energy handling to the shadow computation code (which shouldn’t be too much effort).
global_settings {
max_trace_level 10
photons { spacing 0.003 media 10 }
}
camera {
right x*image_width/image_height
location <-2,2.6,-10>
look_at <0,0.75,0>
}
light_source {
<500,300,150>
color rgb 1.3
photons {
refraction on
reflection on
}
}
sky_sphere {
pigment {
gradient y
color_map {
[0.0 rgb <0.6,0.7,1.0>]
[0.7 rgb <0.0,0.1,0.8>]
}
}
}
plane {
y, 0
texture { pigment { color rgb 0.7 } }
}
#declare M_Glass=
material {
texture {
pigment {rgbt 1}
finish {
ambient 0.0
diffuse 0
specular 0.2 // just to give a hint where the sphere is
}
}
interior { ior 1.0 }
}
#declare M_PseudoGlass=
material {
texture {
pigment {rgbt 1}
finish {
ambient 0.0
diffuse 0.5
specular 0.6
roughness 0.005
reflection { 0.3, 1.0 fresnel on }
conserve_energy
}
}
interior { ior 1.5 }
}
sphere {
<1.1,1,-1.3>, 1
material { M_Glass }
photons {
target 1.0
refraction on
reflection on
}
}
// behind target object
box {
<-0.2,0,-2.3>, <0.0,4,0.3>
material { M_PseudoGlass }
rotate z*1 // just to better see the reflection of the horizon
}
// before target object
box {
<2.4,0,-2.3>, <2.6,4,-0.3>
material { M_PseudoGlass }
photons { pass_through }
rotate z*1 // just to better see the reflection of the horizon
}
|
|
178 | Texture/Material/Finish | Feature Request | 3.70 beta 39 | Very Low | Low | Modify metallic reflection code to better work with con... | Tracked on GitHub | |
|
Task Description
The combination of metallic reflection with conserve_energy causes the reflection to lose colour, as demonstrated by the following scene:
global_settings {
max_trace_level 10
}
camera {
right x*image_width/image_height
location <-2,2.6,-10>
look_at <0,0.75,0>
}
light_source {
<500,300,150>
color rgb 1.3
}
sky_sphere {
pigment {
gradient y
color_map {
[0.0 rgb <0.6,0.7,1.0>]
[0.7 rgb <0.0,0.1,0.8>]
}
}
}
plane {
y, 0
texture { pigment { color rgb 0.7 } }
}
#declare M=
material {
texture {
pigment {rgbt <1.0,0.7,0.2,0.99>}
finish {
ambient 0.0
diffuse 0.5
specular 0.6
roughness 0.005
reflection { 0.8, 1.0 metallic }
conserve_energy
}
}
interior { ior 1.5 }
}
box {
<-0.2,0,-2.3>, <0.0,4,0.3>
material { M }
rotate z*5
rotate x*2
}
|
|
181 | Backend | Unimp. Feature/TODO | 3.70 beta 40 | Very Low | Medium | Unimplemented, altered or missing features to document ... | Tracked on GitHub | |
|
Task Description
This is a list of unimplemented features and things to fix with respect to 3.7 vs 3.6 compatibility. They either need to be fixed in code, or failing that, to be documented prior to release.
Create_INI works differently from 3.6. Prior versions of POV-Ray would write all options to the file, even if they were not supplied by the user (non-supplied options would take the default value). Currently in 3.7, only supplied options are written, because the front-end does not send unused options to the back-end. The proper fix for this would be to have a set of defines that establish the defaults all in one place (currently we rely on hard-coded values scattered around the code), and for the Output_INI_Option() function to look up and use the default when not supplied. As this is not likely to be done before 3.7 release, we need to document it as a temporary situation.
The following messages are marked as ‘currently not supported by code’ in povmsgid.h. We need to check where this comment is correct and if so the docs need to be updated to indicate this (for items that are already documented). Some items may be re-implemented later, and some may never be:
kPOVAttrib_TestAbort
kPOVAttrib_TestAbortCount
kPOVAttrib_VideoMode
kPOVAttrib_Palette
kPOVAttrib_DisplayGammaType
kPOVAttrib_FieldRender
kPOVAttrib_OddField
kPOVAttrib_AntialiasGammaType
kPOVAttrib_LightBuffer
kPOVAttrib_VistaBuffer
kPOVAttrib_DrawVistas
This bug should be edited to add/remove items as time goes by.
|
|
202 | Geometric Primitives | Definite Bug | 3.70 RC3 | Very Low | Low | Numerical oddities in Julia_Fractal | Tracked on GitHub | |
|
Task Description
I understand that some things have changed in the way certain computations in POV-Ray decide when something is “good enough” and I think this is biting me in Julia_Fractal (where, of course, the highest-resolution computations are needed).
The bug has been posted here:
http://news.povray.org/povray.bugreports/thread/%3Cweb.4dbf2e26b56a53c15b4449250%40news.povray.org%3E/
Including a short .pov file and instructions that reproduce it.
(It pops up in other configurations and view angles as well, but this one captures in in a way that makes it clear it’s a bug: the distance of the camera from the origin appears to change the shape of the rendered object).
This appeared first on a Windows Server 2003 machine, it is apparently confirmable on at least one other system as per that thread.
|
|
205 | Documentation | Unimp. Feature/TODO | 3.70 RC3 | Very Low | Low | Syntax documentation uses inconsistent notation | Tracked on GitHub | |
|
Task Description
The syntax notation used in the main documentation is different than that used in the quick-reference section. This should be changed for consistency, using the superior quick-reference notation throughout.
|
|
222 | Geometric Primitives | Definite Bug | 3.70 RC3 | Very Low | Low | incorrect render of CSG merge with radiosity | Tracked on GitHub | |
Future release |
Task Description
The problem arises when I am trying to trace a radiosity scene without conventional lighting that has a GSG merge object. There are a coincident surfaces, but these surfaces are first merged, then the texture applied. The texture is a simple solig color non-transfluent pigment, default normal, default finish etc..
Problem consists when adding antialiasing, changing resolution, changing camera view-point etc.; when I replace merge with union, the problem disappeared.
The scene was checked on two different machines with different versions of POV-Ray:
Gentoo Linux, kernel 2.6.39-r3, i686 Intel(R) Xeon(TM) CPU 2.80GHz GenuineIntel, 2G RAM (this is Dell PowerEdge 2650 server with 2 dual-core Intel Xeon MP processors); Persistence of Vision™ Ray Tracer Version 3.7.0.RC3 (i686-pc-linux-gnu-g++ 4.5.3 @ i686-pc-linux-gnu)
Gentoo Linux, kernel 2.6.37-r4, x86_64 AMD Athlon™ X2 Dual Core Processor BE-2350, 2G RAM (non-branded machine); Persistence of Vision™ Ray Tracer Version 3.6.1 (x86_64-pc-linux-gnu-g++ 4.4.4 @ x86_64-pc-linux-gnu)
(scene has been adapted slightly to be rendered with 3.6, the adaptation was to change “emission” with “ambient” and replace gamma “srgb” with “2.2”)
Both machines generate similar images.
The attachment is an archive containing sources of minimal scenes with these problems, and sample pictures I generated from them on my machines.
|
|
226 | Geometric Primitives | Possible Bug | 3.70 RC3 | Very Low | Low | Near-coincident surface accuracy | Tracked on GitHub | |
|
Task Description
This is a transparent box very close to a plane.
box {
-1, 1
pigment { rgbf <0, 0, 1, 1> }
}
plane {
#if (version < 3.7)
y, -1.0000007
#else
y, -1.00007
#end
pigment { rgb 1 }
finish { ambient 1 }
}
camera {
location <1, 2, 3>
look_at 0
}
The box is placed 100 times closer to the plane for 3.6, but both 3.6 and 3.7 produce exactly the same black artifact (attached).
So apparently 3.7 is less accurate. (And the exact factor 100 feels suspicious.)
|
|
227 | Refactoring/Cleanup | Unimp. Feature/TODO | 3.70 RC3 | Very Low | High | Fixed Vector Limitations | Tracked on GitHub | |
|
Task Description
See this documentation entry for more details.
|
|
229 | Image format | Feature Request | 3.70 RC3 | Very Low | Low | Clock value into EXIF data for PNG | Tracked on GitHub | |
|
Task Description
The best time for a picture....
I set the day time and so the position of the sun by “clock=”
Normal I document my source very good, but this time, I forgot the clock seting for the picture of my book cover.
So I would find it very practicall to put the clock value and other setings for rendering into EXIF data of the picture.
|
|
230 | User interface | Feature Request | 3.70 RC3 | Very Low | Low | Improved handling of animations | Tracked on GitHub | |
|
Task Description
October to middle November, I prodduced a 5 minutes video mainly py POVRAY.
Here a part of the video.ini file
#
# szenes based on games.pov #
#game-pat #Initial_Frame=450 - time scale 1000 - 30 seconds #Final_Frame=899 #Initial_Clock=-12500 #Final_Clock=17500
#game-lost - time scale 1000 - 22 seconds #Initial_Frame=0 #Final_Frame=659 #Initial_Clock=2000 #Final_Clock=24000
#game-lost - time scale 3000 - 12 seconds - fast through the night #Initial_Frame=0 #Final_Frame=359 #Initial_Clock=24000 #Final_Clock=60000
#book-cover #clock=64000
#game-sunrise - time scale 1000 - 35 seconds #Initial_Frame=0 #Final_Frame=1049 #Initial_Clock=60000 #Final_Clock=95000
Now imagine all the problems:
One computer crashes often because of thermal problems. Last picture rendere 487.
Now calculate the setings, that this computer continues the task at 487
Or 2 computers should render a scene.
Sounds very easy. Something like computer 1 makes 0..499 computer 2 makes 500..999.
But the computers are different in speed and the pictures are very different in computation time.
So it would be best
computer 1: 0 to 999 computer 2: 999 to 0
They would meet in the middle, where ever this middle is.
So it would be much easier with
#game-sunrise - time scale 1000 - 35 seconds Initial_Frame=0 Final_Frame=1049 Initial_Clock=60000 Final_Clock=95000 Initial_Task=487 Final_Task=1049
So I have not to calculate the exact clock seting, when a computer sould continue a task after crashing at picture 487
#game-sunrise - time scale 1000 - 35 seconds Initial_Frame=0 Final_Frame=1049 Initial_Clock=60000 Final_Clock=95000 Initial_Task=1049 Final_Task=0
This would be the reverse calcualtion order. Starting with picture 1049 and going down 1048..1047
|
|
240 | Geometric Primitives | Feature Request | 3.70 RC3 | Very Low | Low | Object for efficient automatic periodic pavement | Tracked on GitHub | |
|
Task Description
Whenever some object is to be periodically repeated in some kind of grid, you can achieve this with macros, but it a) wastes a lot of resources
even if object references are implemented in the future, wrapper with its own transformation matrix still takes space and bookkeeping
b) is not infinite
annoying when making infinite planar tiling with arbitrary objects
like an approximate water surface or tiling with real bricks
or anything that needs to extend to horizon
c) is not optimized for periodicity
I think it can be very efficiently implemented as an object that takes a finite object argument (like CSG functions) and can be periodic in either 1D,2D or (possibly dangeorous?) 3D with specified period. In each dimension, the number of repetitions can be any integer or even infinity (or max_int). Something like periodicity <2,2,Infinity> 2 copies in 1 direction, 2 in the other, infinite in the third grid_separation <1,2,2> 1 unit size in first direction, 2 unit sizes in the other two
All the code needs to do is raytrace in the current unit cell and if the ray passes uninterrupted, pass it through the neighbouring unit cell (which means trace a translated ray through the same object). The object itself would just feel an additional clipping box, everything else would work seamlessly.
In case of infinite column of transparent object, max_trace stops the infinite loop anyway.
This is just a suggestion, I realize this is more of a long-term change but it is quite easy to implement and would simplify a large number of projects.
|
|
246 | Other | Possible Bug | 3.70 RC6 | Very Low | Low | Regression on scale limit between 3.7 and previous rele... | Tracked on GitHub | |
|
Task Description
From Thomas de Groot
Using the following code for a (sky) sphere in a scene, with light source well outside the sphere; works correctly until the above scale value. Use a value of >=100*10e4 and the sphere becomes black.
#version 3.7;
global_settings{ assumed_gamma 1.0 }
#declare T_sky =
texture {
pigment {
gradient y
pigment_map {
[0.0 srgb <1.0,0.7,0.6>*1 transmit 0.5]
[1.0 srgb <0.8,0.1,0.0>*1 transmit 0.5]
}
}
finish {
emission 0.9
diffuse 0.0
}
}
#declare T_cosmos =
texture {
pigment {
color rgbt <0,0,0,1>
}
finish {
ambient 0.0
diffuse 0.0
}
}
sphere {
<0,0,0>,1
texture {T_sky}
interior_texture {T_cosmos}
no_shadow
no_reflection
inverse
scale 99.9*10e4
}
Working with windows version of POV-Ray and Win7 x64
Is this normal for version 3.7 RC5? I seem to remember that with lower versions of POV-Ray on could go at least to 10e6. Especially with the Ringworld scenes back in 2010 the scales used where much larger without any black out.
I can indeed confirm that the Ringworld scene does not render correctly anymore, with identical black out.
|
|
248 | Parser/SDL | Feature Request | Not applicable | Very Low | Low | Implement mechanism to compute direction of a spline | Tracked on GitHub | |
Future release |
Task Description
The SDL currently provides no way to compute the exact direction of a spline at a given location, even though mathematically this is a piece of cake: The first-order derivative of any spline section gives you the “speed” as a vector function, and is trivial to compute for polynomial splines (which are behind all spline types that POV-Ray supports); the normalized “speed” vector, in turn, gives the “pure” direction.
For exact direction/speed computations, I propose to extend the SDL invocation syntax as follows to allow for evaluating a spline’s derivative:
SPLINE_INVOCATION:
SPLINE_IDENTIFIER ( FLOAT [, SPLINE_TYPE] [, FLOAT] )
or
SPLINE_INVOCATION:
SPLINE_IDENTIFIER ( FLOAT [, FLOAT] [, SPLINE_TYPE] )
where the second FLOAT will specify the order of derivative to evaluate (defaulting to 0). In order to compute the position, direction, and acceleration of an object traveling along a certain spline, one could then for instance use:
#declare S = spline { ... }
#declare Pos = S(Time);
#declare VSpeed = S(Time,1);
#declare VAccel = S(Time,2);
#declare Dir = vnormalize(VSpeed);
#declare Speed = vlength(VSpeed);
#declare AccelDir = vnormalize(VAccel);
#declare GForce = vlength(VAccel) / 9.81;
Alternatively, a mechanism may be devised to create a spline representing another spline’s derivative; however, it would be debatable whether the syntax should be parameter-like (being an added information that could be overridden again when creating other splines from such a derived spline), or operation-like (converting the spline), and in the latter case how it should affect spline type (and consequently control points); so the spline invocation parameter approach might be more straightforward, with less potential surprises for the user.
|
|
251 | Parser/SDL | Possible Bug | 3.70 RC6 | Very Low | Medium | Scene / include files of >2GB size may cause problems | Tracked on GitHub | |
3.71 release |
Task Description
Code inspection shows that we’re still using fseek() and ftell() in various places (including text file input), which can’t handle file positions of 2GB and beyond (except on 64-bit linux machines); those calls need to be examined and (where appropriate) replaced with the fseek64() macro we’re already defining (but currently not using), and a to-be-defined ftell64() macro.
One potential (untested) error scenario would be a scene file calling a macro that is defined at the end of a > 2GB long include file.
|
|
252 | Photons | Definite Bug | 3.70 RC6 | Very Low | Low | photons and light_group is broken | Tracked on GitHub | |
|
Task Description
photons are not working when used with a light_group. verified in NG posting in p.general a simple scene file is attached.
|
|
256 | Texture/Material/Finish | Feature Request | 3.70 RC6 | Very Low | Low | CSG texturing modes | Tracked on GitHub | |
|
Task Description
At times, the current method of specifying texture for CSG components and compounds is restricting. The issue pops up now and then, see e.g.
http://news.povray.org/povray.pov4.discussion.general/thread/%3Cweb.4799def8e1857b77c150d4c10%40news.povray.org%3E/
http://news.povray.org/povray.general/thread/%3Cweb.4fc892634f065c00e32b83540@news.povray.org%3E/
http://news.povray.org/povray.general/thread/%3Cweb.5073e9f7dae1fbb2d97ee2b90%40news.povray.org%3E/
There should be a new CSG option “texture_mode” or similar, which could take one of the following values:
preserve (the current behavior) cutaway (the current behavior when specifying cutaway_textures) override (replace all individual textures with compound texture) layer (layer the compound texture over the existing textures)
and possibly, more involved
modify/merge: if both element and compund textures are simple, i.e. not layered or mapped, override all default values of the element textures with the values from the compound texture. The idea would be to, e.g., have the elements already pigmented but then apply common normal or finish properties.
|
|
263 | Parser/SDL | Feature Request | 3.70 RC6 | Very Low | Low | Functions and patterns for finish variations | Tracked on GitHub | |
|
Task Description
the pigment {} and normals {} sections allow spatial variation of color, transparency and normal map. On the other hand, the specular parameter is a fixed scalar. This removes many possibilities. For instance, specularity could vary in space (speckles of oil or water on a surface, worn-out finish, having specularity reduce where the pigment transparency increases) and have color components. With current settings, the light’s color is simply multiplied by the scalar specified by “specular”, whereas multiplying each component with different color could create diverse effects (the “metallic” keyword already acts similar to duplicating the specular color from the pigment). The syntax could be exactly the same as for the pigment (all the patterns, color maps, image maps and functions would apply, allowing reuse of most of the code).
The effect can now be partially faked by having patterned textures, but it requires a very complex code and the lack of layering of patterned textures makes it difficult to vary the specularity and pigment separately.
In a similar way, roughness and brilliance could also vary in space.
Doing the same for varying reflectivity would be more difficult, as it has angular dependence and possibilty of Fresnel calculation, but it could at least be a full color instead of a simple scalar multiplier. For instance, having a blue surface that reflects only red component of the light should not be impossible.
I think at least part of this functionality actually makes the scene description language more uniform and self-consistent.
|
|
269 | Texture/Material/Finish | Possible Bug | 3.70 RC6 | Very Low | Low | Transparent Objects inside Media Cause Artefacts | Tracked on GitHub | |
|
Task Description
When placing a transparent object inside another object which contains media, artefacts may occur (see attached file). They look similar to specular highlights or are just strange white spots in the image.
I discovered artefacts of that kind first in the image of which MediaArtefactDetail.png is a cropped part. The code I managed to reproduce such artefacts with contained a “starfield” sphere
sphere {
<0,0,0>, 1
pigment { rgbt 1 }
interior {
media {
emission rgb 1/10
density {
crackle form <1,0,0>
density_map {
[0.0 rgb 1]
[0.05 rgb 0]
}
scale 0.002
}
}
}
scale 1000
hollow on
}
and a transparent sphere
sphere {
<0,0,0>, 1
pigment { rgbt 1 }
scale 2
hollow on
}
which is, obviously, completely inside the other sphere. So is the camera.
Since the sphere has a pigment { rgbt 1 }, it should be completely invisible, which is correctly rendered as long as the scaling factor is 1 and hollow off (MediaArtefact1.png). Changing hollow to on does not yet produce the artefact, but the right half of the output image seems to be shifted by one pixel (MediaArtefact2.png). Changing the scaling factor to 2 (as it is in the above code) produces the artefact (MediaArtefact3.png). Changing the camera location (MediaArtefact4.png) does not change anything, the artefact just “moves with the sphere”. Changing the sphere size again, however, seems to stir up the “stars” in the “starfield” sphere while not removing the artefacts (MediaArtefact5.png). Changing hollow to off again does neither (MediaArtefact6.png).
The artefacts are definitely no specular highlights. There is not even a light source in the scene that could produce any. I used POV-Ray 3.7 RC6 to render the images, but the artefact shown in MediaArtefactDetail.png already occured in POV-Ray 3.6 which I used to render that image.
|
|
273 | Other | Definite Bug | 3.70 RC6 | Very Low | Medium | No automatic backup files from inc files | Tracked on GitHub | |
|
Task Description
If enabled, POVray always created backups of pov and inc files once per session. Now using 3.7 RC6 only pov file backups are created but not from inc files.
|
|
278 | Backend | Feature Request | 3.70 RC7 | Very Low | Medium | Implement Lens Flare Rendering | Tracked on GitHub | |
|
Task Description
Currently POV-Ray does not support rendering lens flare effects, however, they can be simulated using a macro (include file) by Chris Colefax.
I would like to suggest adding a feature to POV-Ray to support lens effects “natively” since
as far as I know the macro has been designed for POV-Ray 3.1 so with each new POV-Ray version it gets more likely that this macro does not work properly any more
the macro does not work when rendering with radiosity, probably because the macro creates the lens effect by using a pigment with a high ambient value (which is ignored by POV-Ray 3.7’s radiosity algorithm).
Additionally, the macro is not quite easy to employ because
it needs to know the exact camera parameters (location etc.) and defines an own camera itself so any important camera information has to be stored if the effect has to work as expected
it does not (actually cannot) take into account that objects may (partially) hide the lens effect
reflections and refractions (of light sources) cannot be combined with it properly - the user would have to calculate both the point where the reflected/refracted light source can be observed and the shape it then has due to distortion, and in more complex scenes such computations are nearly impossible in SDL.
I would suggest integrating such a lens flare rendering feature with the “looks like” mechanism you already have for light sources. Several parameters that can currently be set for the macro - including effect brightness and intensity, lens options and whether to create a flare at all - could be set for the light source.
Then POV-Ray could store the location and colour of each ray that finally intersected the “looks like” object of a light source and, having finished the main rendering, from that data compute a partially transparent “lens flare layer” eventually mixed into the rendered image. By this, the above mentioned problems could be avoided:
an object fully or partially intersecting a light source’s “looks like” object would also reduce the number of pixels used to create a flare - and therefore reduce that flare until fully hiding it
the same goes for reflected and/or refracted versions of the “looks like” object
the camera’s location and other properties would be used automatically
and finally, as a feature supported by POV-Ray itself, there would be neither compatibility issues nor problems like the effect not fitting together with radiosity.
Do not get me wrong, I would not expect POV-Ray to really calculate intersections that naturally happen in a camera lens, causing lens flares. Effects looking appropriate can actually be created just in 2D space (as some graphics programs do support) so the work to be done would, as far as I have any overview, be:
storing, as mentioned above, the relevant data for pixels showing “looks like” objects
calculating a lens flare from that data after the render has finished
overlaying the rendered image with the newly created lens effect.
|
|
286 | Texture/Material/Finish | Possible Bug | 3.70 RC7 | Very Low | Low | reflection exponent other than 1 causes black artifacts... | Tracked on GitHub | |
|
Task Description
[EDIT: Original title was “radiosity causing black patches when using emission less than 0”]
see attached image for reference.
mountain on left has emission set to -.13 and black patches show up, when emmission set to 0 or greater no patches
changing max_trace or any radiosity settings has no effect
setting no_radiosity on mountain fixed problem as a temp fix
code sample ...
#version 3.7;
#default { finish { ambient 0 } }
#declare rad_lvl = 4;
global_settings {
assumed_gamma 1
max_trace_level max(5,rad_lvl*3)
adc_bailout .007
ambient_light 0
radiosity {
pretrace_start 64/max(image_width,image_height)
#if(rad_lvl)
pretrace_end max(2,int(8/rad_lvl))/max(image_width,image_height)
#else
pretrace_end 32/max(image_width,image_height)
#end
count pow(rad_lvl+1,2)*10
nearest_count 1
#if(rad_lvl) error_bound 1/rad_lvl #end
low_error_factor max(.4,(8-rad_lvl)/10)
recursion_limit 1
gray_threshold .25
brightness 1
max_sample 1
normal on
media off
always_sample off
minimum_reuse min(.008,8/max(image_width,image_height))
maximum_reuse .1
adc_bailout .02
}
}
#declare sunC = rgb <1, 1, .9925>; // actual D65 standard illuminant
#declare SkyC = rgb <.3195, .5745, .8805>;
#macro GammaAdj(C,G) rgb <pow(C.red,G),pow(C.green,G),pow(C.blue,G)> #end
light_source {
50000*y
sunC*1.06
area_light <-300, 0, -300>, <300, 100, 300>, 3, 3
rotate <-28, 0, 14>
adaptive 0
circular
}
sphere { 0, 1
texture {
pigment{
gradient y
pigment_map{
[.07 GammaAdj(SkyC,.5)]
[.2 average pigment_map { [.5 GammaAdj(SkyC,.75)][1 wrinkles turbulence .65 octaves 5 lambda 3 omega .9 color_map { [.2 rgb 1][.5 SkyC] } scale <10, .1, 1>] }]
[.4 GammaAdj(SkyC,1.15)]
[.5 GammaAdj(SkyC,1.35)]
}
rotate -75*y scale <1, 1, 100>
}
finish { diffuse .72 }
}
scale 100000
inverse
}
#declare Cam_pos = Cam_pos + <0, 20, -40>;
#declare Cam_lkt = Cam_lkt + <0, 10, 50>;
camera {
location Cam_pos
direction <0,0,1>
right 1.33*x
up y
sky <0,1,0>
#if(Cam_agl) angle Cam_agl #end
look_at Cam_lkt
}
#macro sinai(HillQ)
#local F = function { pattern { granite poly_wave 4 turbulence .01 lambda 2.1 omega .9 scale 5 translate <.2, 0, 18.08> scale <2, 1, 3> } }
#local N = function { pigment { crackle ramp_wave turbulence .3 lambda 2.2 omega .76 color_map {[0 rgb 0][1 rgb 1] } scale .07 translate <-.15, -.12, .13> } }
height_field {
function HillQ, HillQ { F(x,y,z) + N(x,y,z).grey/47 }
water_level .05
clipped_by { box { <0, .05, .3>, <1, 1, 1> } }
translate <-.5, -.05, -.5>
rotate 20*y
texture {
pigment{ crackle color_map { [0 rgb <161, 107, 71>/255][.25 rgb <193, 132, 93>/255][.35 rgb <218, 163, 123>/255][.45 rgb <212, 153, 112>/255][.55 rgb <222, 166, 125>/255][.65 rgb <236, 178, 124>/255][.75 rgb <220, 154, 102>/255][.85 rgb <160, 121, 103>/255] } turbulence .75 lambda 3 omega .7 scale .1 }
finish{ diffuse albedo .56 emission -.13 specular .25 roughness .02 brilliance 1.5 metallic 1.3 }
normal { crackle poly_wave .7 turbulence .4 omega .8 scale <.007, .03, .007> }
}
rotate 12*y
scale <2400, 2000, 3000>*1.5
translate <1900, 0, 1900>
scale <-1,1,1>
no_radiosity
}
#end
sinai(1600)
plane { y,0 pigment { rgb <1, 1, 1> } }
//courtyard gating not included due to size of code and many external files needed. add anything around <0,0,0> to try to reproduce effect of error
|
|
288 | Geometric Primitives | Possible Bug | 3.70 RC7 | Very Low | Low | Tolerance problem with refraction in blobs in CSG inter... | Tracked on GitHub | |
|
Task Description
If a blob is intersected by something else, the composite object has incorrect refractions if it is too small (in absolute units). Having the same object constructed without a blob, the errors happen at much smaller scales. The errors don’t affect solid objects, just refractions.
An example shows a half-sphere, constructed as CSG sphere + plane, and identical half-pshere, constructed as CSG blob + plane. When the scale of the entire construction is changed, the refractions disappear first for the blob, and at 100x times smaller scale, also for the sphere. The right side shows the solid version, showing that the surface intersection test is ok, it’s just the refraction that fails.
The problem is not present when looking from the curved side (the blob side). So the ray that hits the blob, gets refracted correctly, but the ray that hits the intersecting plane first, and should then refract in the blob from the inside, doesn’t work. If in attached sphere, you exchange -y with y in clipping planes, everything is ok.
The scale when this happens is not very small - blobs of radius 0.02 already fail (noticed because in 1=1metre scale, blob raindrops on a glass plate didn’t have intersections when looking from the back).
Examples are named by factor=9,0.9,0.09,0.009 and you can see first the blob (top) refraction gets smaller and disappears, then later the bottom (sphere) also gets the same problem.
|