POV-Ray

The Persistence of Vision Raytracer (POV-Ray).

This is the legacy Bug Tracking System for the POV-Ray project. Bugs listed here are being migrated to our github issue tracker. Please refer to that for new reports or updates to existing ones on this system.

IDCategoryTask TypeReported InPrioritySeverity  descSummaryStatusProgressDue In Version
333User interfaceFeature Request3.70 releaseVery LowLowMake text in "about" alt+b dialog selectable with the m...Tracked on GitHub
0%
Task Description

When you press alt+b or access the “about” dialog in the Help menu it displays some text including software version number and list of contributors.

It would be nice to be able to select and copy this text using this mouse. Sometimes in the newsgroup I have to tell people what version of POVray I am using, and typing the version number can be a pain.

335Parser/SDLPossible Bug3.70 releaseVery LowLowmacro works in variable but not in arrayTracked on GitHub
0%
Task Description

This doesn’t work:

#declare pavement_object = array[2]
{

object {trash_can_macro()	scale 3/4			translate -x * 1/2},
object {potted_plant_macro(_CT_rand2)	scale 3/4	scale 3/2	translate -x * 1/2}

}

This does work:

#declare trash_can_object = object {trash_can_macro()};
#declare potted_plant_object = object {potted_plant_macro(_CT_rand2)};
#declare pavement_object = array[2]
{

object {trash_can_object	scale 3/4			translate -x * 1/2},
object {potted_plant_object	scale 3/4	scale 3/2	translate -x * 1/2}

}

Logically, I cannot see a reason for this to be so.

4Subsurface ScatteringUnimp. Feature/TODO3.70 beta 32Very LowLowIntegrate Subsurface Scattering with standard lighting ...Tracked on GitHub
90%
Future release Task Description

Subsurface Scattering still uses its own rudimentary code to compute illumination from classic light sources; this must be changed to use the standard light source & shadow handling code, to add support for non-trivial light sources (e.g. spotlights, cylindrical lights, area lights), partially-transparent shadowing objects etc.

6Subsurface ScatteringUnimp. Feature/TODO3.70 beta 32DeferLowIntegrate Subsurface Scattering with PhotonsTracked on GitHub
0%
Future release Task Description

Subsurface scattering must be made photon-aware.

222Geometric PrimitivesDefinite Bug3.70 RC3Very LowLowincorrect render of CSG merge with radiosityTracked on GitHub
0%
Future release Task Description

The problem arises when I am trying to trace a radiosity scene without conventional lighting that has a GSG merge object. There are a coincident surfaces, but these surfaces are first merged, then the texture applied. The texture is a simple solig color non-transfluent pigment, default normal, default finish etc..

Problem consists when adding antialiasing, changing resolution, changing camera view-point etc.; when I replace merge with union, the problem disappeared.

The scene was checked on two different machines with different versions of POV-Ray:

  1. Gentoo Linux, kernel 2.6.39-r3, i686 Intel(R) Xeon(TM) CPU 2.80GHz GenuineIntel, 2G RAM (this is Dell PowerEdge 2650 server with 2 dual-core Intel Xeon MP processors); Persistence of Vision™ Ray Tracer Version 3.7.0.RC3 (i686-pc-linux-gnu-g++ 4.5.3 @ i686-pc-linux-gnu)
  2. Gentoo Linux, kernel 2.6.37-r4, x86_64 AMD Athlon™ X2 Dual Core Processor BE-2350, 2G RAM (non-branded machine); Persistence of Vision™ Ray Tracer Version 3.6.1 (x86_64-pc-linux-gnu-g++ 4.4.4 @ x86_64-pc-linux-gnu)

(scene has been adapted slightly to be rendered with 3.6, the adaptation was to change “emission” with “ambient” and replace gamma “srgb” with “2.2”)

Both machines generate similar images.

The attachment is an archive containing sources of minimal scenes with these problems, and sample pictures I generated from them on my machines.

230User interfaceFeature Request3.70 RC3Very LowLowImproved handling of animationsTracked on GitHub
0%
Task Description

October to middle November, I prodduced a 5 minutes video mainly py POVRAY.

Here a part of the video.ini file

#

# szenes based on games.pov
#

#game-pat
#Initial_Frame=450 - time scale 1000 - 30 seconds
#Final_Frame=899
#Initial_Clock=-12500
#Final_Clock=17500

#game-lost - time scale 1000 - 22 seconds
#Initial_Frame=0
#Final_Frame=659
#Initial_Clock=2000
#Final_Clock=24000

#game-lost - time scale 3000 - 12 seconds - fast through the night
#Initial_Frame=0
#Final_Frame=359
#Initial_Clock=24000
#Final_Clock=60000

#book-cover
#clock=64000

#game-sunrise - time scale 1000 - 35 seconds
#Initial_Frame=0
#Final_Frame=1049
#Initial_Clock=60000
#Final_Clock=95000

Now imagine all the problems:

One computer crashes often because of thermal problems.
Last picture rendere 487.

Now calculate the setings, that this computer continues the task at 487

Or 2 computers should render a scene.

Sounds very easy. Something like computer 1 makes 0..499 computer 2 makes 500..999.

But the computers are different in speed and the pictures are
very different in computation time.

So it would be best

computer 1: 0 to 999
computer 2: 999 to 0

They would meet in the middle, where ever this middle is.

So it would be much easier with

#game-sunrise - time scale 1000 - 35 seconds
Initial_Frame=0
Final_Frame=1049
Initial_Clock=60000
Final_Clock=95000
Initial_Task=487
Final_Task=1049

So I have not to calculate the exact clock seting,
when a computer sould continue a task after crashing at picture 487

#game-sunrise - time scale 1000 - 35 seconds
Initial_Frame=0
Final_Frame=1049
Initial_Clock=60000
Final_Clock=95000
Initial_Task=1049
Final_Task=0

This would be the reverse calcualtion order.
Starting with picture 1049 and going down 1048..1047

8RadiosityUnimp. Feature/TODO3.70 beta 32DeferLowImprove Radiosity "Cross-Talk" Rejection in CornersTracked on GitHub
0%
Future release Task Description

Near concave edges, radiosity samples may be re-used at a longer distance away from the edge than towards the edge; there is code in place to ensure this, but it only works properly where two surfaces meet roughly rectangularly, while failing near the junction of three surfaces or non-rectangular edges, potentially causing “cross-talk”.

It should be investigated how the algorithm can be improved or replaced to better cope with non-trivial geometry.

264PhotonsUnimp. Feature/TODO3.70 RC6DeferLowImprove precision of photon direction informationTracked on GitHub
0%
Task Description

In the photons map, the direction of each photon is stored as separate latitude & longitude angles (encoded in one byte each), causing the longitudinal direction component’s precision to be unnecessarily high for directions close to the “poles” (Y axis); in addition, encoded value -128 is never used. For better overall precision as well as precision homogenity, the following scheme could be used instead:

  • Encode the latitude (-pi/2 to +pi/2) into LatCount=226 distinct values (= 256*sqrt(pi)/2) rounded to the next even number) from 0 to LatCount-1 using
latCode = (int)((LatCount-1) * (lat/M_PI + 0.5) + 0.5)
  • For each latitude code, define a specific number of encodable longitude values, LngCount[latCode] = approx. cos(lat)*pi*65536/(2*LatCount); this can be a pre-computed table, and may need slight tweaking for optimum use of the code space. Encode the longitude (-pi to +pi) into a value from 0 to (LngCount[lat]-1) using
LC = LngCount[latCode];
lngCode = (int)(LC * (lng/(2*M_PI) + 0.5) + 0.5) % LC;
  • Besides LngCount[latCode], also store the sum of LngCount[i] with i < latCode as LatBase[latCode]; encode the direction as
dirCode = LatBase[latCode] + lngCode;
  • For decoding, a simple lookup from a precomputed list of directions could be used (2^15 entries, i.e. one hemisphere, will suffice). To conserve space, direction vectors could be scaled by (2^N-1) and stored as (N+1)-bit signed integer triples rather than floating point values; due to the limited precision of the lat/long information, 8 bits per coordinate might be enough, giving a table size of 96k. A full double-precision table would require 786k instead.
44RadiosityFeature RequestAllVery LowLowImprove Normals Handling in RadiosityTracked on GitHub
0%
Future release Task Description

Currently, radiosity does not make use of the fact that pertubed normals would theoretically just require a different weighting of already-sampled rays, leading to the following issues:

  • Honoring normal pertubations in radiosity leads to an increased number of samples, slowing down sample cache lookup.
  • The increased number of samples is generated from a proportionally higher number of sample rays, slowing down pretrace even further.
  • Low-amplitude pertubations tend to be smoothed out; “reviving” these is only possible by increasing the general sample density.
  • Handling of multi-layered textures with different normal pertubations is currently poorly implemented.

As a solution, I propose to store for each radiosity sample not only the resulting illumination for a perfectly unpertubed normal, but from the same set of sample rays also compute the illumination for an additional set of about a dozen standardized pertubed-normal directions, and interpolate among these when computing the radiosity-based illumination for a particular point that has a pertubed normal.

For backwards compatibility, this method of dealing with pertubed normals in radiosity might be activated by a different value for the “normal” statement in the radiosity block, say, “normal 2”.

41OtherFeature Request3.70 beta 32Very LowLowimprove command-line parsing error messagesTracked on GitHub
0%
Task Description

POV-Ray 3.6, upon encountering problems when parsing command line and/or .ini file options, would quote the offending option in the error message.

POV-Ray 3.7 currently just reports that there is some problem with the command line, without providing any details. I suggest changing this, as the information may be helpful at times.

248Parser/SDLFeature RequestNot applicableVery LowLowImplement mechanism to compute direction of a splineTracked on GitHub
0%
Future release Task Description

The SDL currently provides no way to compute the exact direction of a spline at a given location, even though mathematically this is a piece of cake: The first-order derivative of any spline section gives you the “speed” as a vector function, and is trivial to compute for polynomial splines (which are behind all spline types that POV-Ray supports); the normalized “speed” vector, in turn, gives the “pure” direction.

For exact direction/speed computations, I propose to extend the SDL invocation syntax as follows to allow for evaluating a spline’s derivative:

    SPLINE_INVOCATION:
        SPLINE_IDENTIFIER ( FLOAT [, SPLINE_TYPE] [, FLOAT] )

or

    SPLINE_INVOCATION:
        SPLINE_IDENTIFIER ( FLOAT [, FLOAT] [, SPLINE_TYPE] )

where the second FLOAT will specify the order of derivative to evaluate (defaulting to 0). In order to compute the position, direction, and acceleration of an object traveling along a certain spline, one could then for instance use:

    #declare S        = spline { ... }
    #declare Pos      = S(Time);
    #declare VSpeed   = S(Time,1);
    #declare VAccel   = S(Time,2);
    #declare Dir      = vnormalize(VSpeed);
    #declare Speed    = vlength(VSpeed);
    #declare AccelDir = vnormalize(VAccel);
    #declare GForce   = vlength(VAccel) / 9.81;

Alternatively, a mechanism may be devised to create a spline representing another spline’s derivative; however, it would be debatable whether the syntax should be parameter-like (being an added information that could be overridden again when creating other splines from such a derived spline), or operation-like (converting the spline), and in the latter case how it should affect spline type (and consequently control points); so the spline invocation parameter approach might be more straightforward, with less potential surprises for the user.

334Texture/Material/FinishFeature Request3.70 releaseVery LowLowHLS colorsTracked on GitHub
0%
Task Description

It would be nice to be able to specify colors in HLS as well as RGB.

Currently, you can use a macor to convert individual colors. But this does not work in color_maps where you want smooth gradations/interpolations between two or several colors.

263Parser/SDLFeature Request3.70 RC6Very LowLowFunctions and patterns for finish variationsTracked on GitHub
0%
Task Description

the pigment {} and normals {} sections allow spatial variation of color, transparency and normal map. On the other hand, the specular parameter is a fixed scalar. This removes many possibilities. For instance, specularity could vary in space (speckles of oil or water on a surface, worn-out finish, having specularity reduce where the pigment transparency increases) and have color components. With current settings, the light’s color is simply multiplied by the scalar specified by “specular”, whereas multiplying each component with different color could create diverse effects (the “metallic” keyword already acts similar to duplicating the specular color from the pigment). The syntax could be exactly the same as for the pigment (all the patterns, color maps, image maps and functions would apply, allowing reuse of most of the code).

The effect can now be partially faked by having patterned textures, but it requires a very complex code and the lack of layering of patterned textures makes it difficult to vary the specularity and pigment separately.

In a similar way, roughness and brilliance could also vary in space.

Doing the same for varying reflectivity would be more difficult, as it has angular dependence and possibilty of Fresnel calculation, but it could at least be a full color instead of a simple scalar multiplier. For instance, having a blue surface that reflects only red component of the light should not be impossible.

I think at least part of this functionality actually makes the scene description language more uniform and self-consistent.

79Source codeFeature Request3.70 beta 35aVery LowLowFull-Featured Test-Scene to check the correctness of po...Tracked on GitHub
0%
Future release Task Description

Hi,

it would be nice if there exists a test scene (not a benchmark) which has a high coverage of povray source and can be used as correctness validation of povray. It schould be produce an image which can be compared to a golden reference image.

It may be also possible to create a regression test suite which does automatic comparision of the render results.

301OtherDefinite Bug3.70 RC7Very LowLowFallback to default image size causes wrong values to b...Tracked on GitHub
50%
Task Description

When resolution is not specified (neither via POVRAY.INI nor via QUICKRES.INI nor via command line or custom .ini file), random values are displayed for image resolution in the Image Output Options message output. (The actual render will be performed at the default size of 160×120 pixels though.)

127Parser/SDLFeature Request3.70 beta 37aVery LowLowExpandable arraysTracked on GitHub
0%
Future release Task Description

Currently, arrays are of a fixed size. You can’t add or remove items to/from an array. I think it would like arrays to be expandable with no fixed and pre-determined size.

311User interfacePossible Bug3.70 releaseVery LowLowElepsed time error on very long rendersTracked on GitHub
0%
3.71 release Task Description

On a very long render, around day 24, the elapsed time display becomes incorrect, showing 4294967272d 4294967272h 4294967272m 4294967272s.

Found on Windows 7 64 bits and reproduced on Windows 7 32 bits.
NOT reported on other platforms.

310EditorFeature Request3.70 RC7Very LowLowEditor should remember bookmarksTracked on GitHub
0%
Task Description

Now the editor remembers only the cursor positions of the loaded files when starting a new PR session. It would be more friendly to remember whether the window was split or not, as well as the bookmarks.

183Texture/Material/FinishPossible Bug3.70 beta 40Very LowLowcutaway_textures broken with child unionsTracked on GitHub
50%
Future release Task Description

When using cutaway_textures in a CSG object that has union children, results are not as expected; instead, surfaces in the union children that have no explicit texture will be rendered with the default texture instead. This is not the case for e.g. difference children.

Example:

#default { texture { pigment { rgb 1 } } }

camera {
  right x*image_width/image_height
  location  <0,1.5,-4>
  look_at   <0,1,0>
}

light_source { <500,500,-500> color rgb 1 }

#declare U = union {
  sphere { <0,-0.1,-1>, 0.3 }
  sphere { <0, 0.1,-1>, 0.3 pigment { color red 1 } }
}

intersection {
  sphere { <0,0,0>, 1 pigment { color green 1 } }
  object { U }
  cutaway_textures
  rotate y*90
}

When declaring U as an intersection instead, the results are as expected, with the surface of the first sphere in U being rendered with the texture defined in the outer intersection.

256Texture/Material/FinishFeature Request3.70 RC6Very LowLowCSG texturing modesTracked on GitHub
0%
Task Description

At times, the current method of specifying texture for
CSG components and compounds is restricting. The issue
pops up now and then, see e.g.

http://news.povray.org/povray.pov4.discussion.general/thread/%3Cweb.4799def8e1857b77c150d4c10%40news.povray.org%3E/

http://news.povray.org/povray.general/thread/%3Cweb.4fc892634f065c00e32b83540@news.povray.org%3E/

http://news.povray.org/povray.general/thread/%3Cweb.5073e9f7dae1fbb2d97ee2b90%40news.povray.org%3E/

There should be a new CSG option “texture_mode” or similar, which could take
one of the following values:

preserve (the current behavior)
cutaway (the current behavior when specifying cutaway_textures)
override (replace all individual textures with compound texture)
layer (layer the compound texture over the existing textures)

and possibly, more involved

modify/merge: if both element and compund textures are simple, i.e.
not layered or mapped, override all default values of the element
textures with the values from the compound texture. The idea would
be to, e.g., have the elements already pigmented but then apply
common normal or finish properties.

302OtherPossible Bug3.70 RC7Very LowLowconfusing error message when .ini file cannot be parsedTracked on GitHub
0%
Task Description

When a command-line parameter in an .ini file cannot be parsed (such as “+a.3”), POV-Ray reports a “Problem with setting”, quoting the command line, rather than indicating that the problem occurred in an .ini file. This leads the user to think that the problem is with the command line itself, unnecessarily confusing him.

229Image formatFeature Request3.70 RC3Very LowLowClock value into EXIF data for PNGTracked on GitHub
0%
Task Description

The best time for a picture....

I set the day time and so the position of the sun by “clock=”

Normal I document my source very good, but this time,
I forgot the clock seting for the picture of my book cover.

So I would find it very practicall to put the clock value
and other setings for rendering
into EXIF data of the picture.

275Light sourceDefinite Bug3.70 RC7Very LowLowcircular area lights exhibit anisotropyTracked on GitHub
50%
Future release Task Description

circular area lights exhibit some anisotropy, being brighter along the diagonals than on average, as can be demonstrated with the following scene:

//+w800 +h800
#version 3.7;
global_settings{assumed_gamma 1}
plane{-z,-10 pigment{rgb 1} finish{ambient 0 brilliance 0}}
disc{0,z,10000,0.5}
camera{orthographic location z look_at 10*z up y*12 right x*12}
light_source{-10*z rgb 10 area_light 10*x 10*y 257 257 adaptive 4 circular}
142Texture/Material/FinishFeature Request3.70 beta 37aVery LowLowcamera_view pigment from MegaPOVTracked on GitHub
0%
Future release Task Description

I probably don’t have to explain why the camera_view pigment in MegaPOV was important, but I will list some reasons anyway:

1) post-processing could be performed in-scene
2) new types of focal blur effects could be created
3) feedback fractals were possible

I’m sure there are many others, as this is one of those features that has undetermined potential!

281Geometric PrimitivesFeature Request3.70 RC7DeferLowBug in rendering of Bézier patchesTracked on GitHub
0%
Future release Task Description

In version 3.7.0.RC7.msvc10.win64, there is a bug in rendering Bézier patches in which four points (along one edge) are all the same point.

The rendering can be seen here:
http://i.imgur.com/eq2UIXR.png
[Edit: See attachment for the rendering]

As you can see, there is a visible unwanted artifact in the corner of each patch. The two patches shown are essentially the same, except with the 4×4 matrix of vertices transposed (just to demonstrate that simply transposing it didn’t fix it).

Expected rendering is a smooth surface without the artifact.

Below is the code used to render the above example.

#version 3.7;

global_settings { assumed_gamma 1.0 }

camera {

  location <45, 31, -10>
  look_at <40, 21, 200>
  right x*image_width/image_height

}

light_source {

  <660, 300, -525>
  color rgb 1

}

Example 1: First point in each row is the same point
bicubic_patch {
type 1 flatness 0.001
u_steps 4 v_steps 4
<32.2168, -23.78125, 0>, <34.4968, -23.78125, 0>, <35.2168, -23.78125, -0.72>, <35.2168, -23.78125, -3>,
<32.2168, -23.78125, 0>, <34.4968, -22.10256, 0>, <35.2168, -21.57244, -0.72>, <35.2168, -21.57244, -3>,
<32.2168, -23.78125, 0>, <33.9709, -21.55577, 0>, <34.52483, -20.85299, -0.72>, <34.52483, -20.85299, -3>,
<32.2168, -23.78125, 0>, <32.30556, -21.50298, 0>, <32.33359, -20.78352, -0.72>, <32.33359, -20.78352, -3>
rotate 180*x scale 1.4
translate ←5, 0, 0>
pigment { color <1, 0, 0> }
}
Example 2: First row is all the same point
bicubic_patch {

  type 1 flatness 0.001
  u_steps 4 v_steps 4
  <32.2168, -23.78125, 0>, <32.2168, -23.78125, 0>, <32.2168, -23.78125, 0>, <32.2168, -23.78125, 0>,
  <34.4968, -23.78125, 0>, <34.4968, -22.10256, 0>, <33.9709, -21.55577, 0>, <32.30556, -21.50298, 0>,
  <35.2168, -23.78125, -0.72>, <35.2168, -21.57244, -0.72>, <34.52483, -20.85299, -0.72>, <32.33359, -20.78352, -0.72>,
  <35.2168, -23.78125, -3>, <35.2168, -21.57244, -3>, <34.52483, -20.85299, -3>, <32.33359, -20.78352, -3>
  rotate 180*x
  scale 1.4
  pigment { color <1, 1, 0> }

}

321OtherDefinite Bug3.70 releaseVery LowLowbounding threshold inconsistencyTracked on GitHub
90%
Task Description

User reported documentation inconsistency. Investigation led to the discovery of a bug in the setting of the current default value.

~source/frontend/renderfrontend.cpp reports the value “3” while ~source/backend/scene/scene.cpp sets a default value of “1”

Before for addressing this issue, are there any thoughts as to what the default value should be?

85OtherFeature RequestNot applicableDeferLowAspect ratio issuesTracked on GitHub
0%
Future release Task Description

Background

When rendering an image, there are actually three aspect ratios involved:

1) The aspect ratio of the camera, set with the up and right vectors.

2) The aspect ratio of the rendered image, set with the +W and +H parameters.

3) The aspect ratio of the pixels in the intended target medium. While this is very often 1:1, it’s definitely not always so (anamorphic images are common in some media, such as DVDs).

The aspect ratio of the camera does not (and arguably should not, although some people might disagree) define the aspect ratio of the image resolution, but the aspect ratio of the image as shown on the final medium. In other words, it defines how the image should be displayed, not what the resolution of the image should be.

This of course means that the aspect ratio of the target medium pixels has to be taken into account when specifying the image resolution. If the target medium pixels are not 1:1 (eg. when rendering for a medium with non-square pixels, or when rendering an anamorphic image eg. for a DVD), the proper resolution has to be specified so that the aspect ratio of the displayed image remains the same as the one specified in the camera block.

This isn’t generally a problem. It usually goes like “my screen is physically 4:3, so I design my scene for that aspect ratio, but the resolution of my screen is mxn which is not 4:3, but that doesn’t matter; I just render with +Wm +Hn and I get a correct image for my screen”.

However, problems start when someone renders an image using an image aspect ratio / pixel aspect ratio combination which does not match the camera aspect ratio. By far the most common situation is rendering a scene with a 4:3 camera for a screen with square pixels but with a non-4:3 resolution (most typically 16:9 or 16:10 nowadays). The image will be horizontally
stretched.

In a few cases the effect is the reverse: The scene (and thus the camera) has been designed for some less-typical aspect ratio, eg. a cinematic 2.4:1 aspect ratio, but then someone renders the image with a 4:3 resolution. The resulting image will be horizontally squeezed.

In a few cases this is actually the correct and desired behavior, ie. when you are really rendering the image in an anamorphic format (eg. for a DVD). However, often it’s an inadverted mistake.

Some people argue that this default behavior should be changed. However, there are also good arguments why it should not be changed. Some argue that POV-Ray should have more features (at the SDL level, at the command-line level or both) to control this behavior.

There are several possible situations, which is why this issue is so complicated. These situations may include:

- The scene author doesn’t really care what aspect ratio is used to render the image, even if it means that additional parts of the scenery become visible or parts are cropped away when using a different aspect ratio than what he used.

In this case the choice of camera aspect ratio should be up to the person who renders the image, and thus selectable on the command-line. However, he should have an easy choice of how changing the aspect ratio affects the image: Should it extend the viewing range, or should it crop part of it, compared to the original?

And this, of course, while still making it possible to render for an anamorphic format.

- The author wants to support different aspect ratios, but he wants to control precisely how it affects the composition of the image. Maybe he never wants anything cropped away within certain limits, but instead the image should always be extended in whichever direction is necessary due to the aspect ratio. Or maybe he wants to allow cropping the image, but only up to a certain point. Or whatever.

In this case the choice of camera aspect ratio should be up to the author, and thus selectable in the scene file, while still allowing some changes from the command-line.

- The author designed his scene for a precise aspect ratio and nothing else, and doesn’t want the image to be rendered in any other aspect ratio. Maybe he used some very peculiar aspect ratio (eg. something like 1:2, ie. twice as tall as wide) for artistic composition reasons, and wants the image rendered with that aspect ratio, period.

Perhaps the author should be able to completely forbid the change of camera aspect ratio in the command-line.

Of course anamorphic rendering should still be supported for targets with a different pixel aspect ratio.

Possible solution

This solution does not necessarily address all the problems described above perfectly, but could be a good starting point for more ideas:

Add a way to specify in the camera block minimum and maximum limits for the horizontal and vertical viewing angles (and if any of them is unspecified, it’s unlimited). Of course for this to be useful in any way, there should also be a way to change the camera and pixel aspect ratios from the command line.

The idea with this is that the author of the scene can use these angle limits to define a rectangular “protected zone” at the center of the view, using the minimum angle limits. In other words, no matter how the camera aspect ratio is modified, the horizontal and/or vertical viewing angles will never get smaller than these minimum angles. This ensures that the image will never be cropped beyond a certain limit, only extended either horizontally or vertically to ensure that the “protected zone” always remains fully visible regardless of what aspect ratio is used.

The maximum angles can be used for the reverse: They ensure that no scenery beyond a certain point will ever become visible, no matter what aspect ratio is used. This can be used to make sure that unmodelled parts of the scene never come into view. Thus the image will always be cropped to ensure this, depending on the aspect ratio.

I’m not completely sure what should be done if both minimum and maximum angles are specified, and the user specifies an aspect ratio which would break these limits. An error message could be a possibility. At least it would be a way for the author to make sure his scene is never rendered using an aspect ratio he doesn’t want. He can use these angle limits to give some leeway how much the aspect ratio can change, to an extent, or he could even force a specific aspect ratio and nothing else (by specifying that both the minimum and maximum angles are the same).

So in short:

- Add a “minimum/maximum horizontal/vertical angles” feature to the camera block. These can be used to define a “protected zone” in the image which must not be breached by command-line options.

- Add a command-line syntax to change the camera aspect ratio (which automatically obeys the “protected zone” settings). Could perhaps give an error message if the command-line options break the limits in the scene camera.

- Add a command-line syntax to specify a pixel aspect ratio other than 1:1. This can be used to render anamorphic versions of the image on purpose (iow. not by mistake).

This can probably be made backwards-compatible in that if none of these new features are used, the behavior could be the same as currently (or at least similar).

26Geometric PrimitivesDefinite Bug3.61Very LowLowArtifacts rendering a cloth which has two-side texturesTracked on GitHub
0%
Future release Task Description

Dear PovRay maintainers and developers, congratulations for your great RayTracer!

We think that we have found a bug while we were rendering a piece of cloth.

In this piece of cloth were defined two textures, one for one side and one for the another side:

  texture { mesh_tex0_0 }
  interior_texture { mesh_tex0_1 }
  • Please: Look at line 77414 of the attached file “test.pov” to see

these definitions in their original context.

We have found some artifacts in the final rendering, in concrete near some wrinkles,
please, look at the attached file “render_artifacts.tga”, I have painted a big green arrow
near the artifacts, maybe you’ll need to do a zoom to see them more accurately.

They are as though the texture of the other side was painted in the incorrect side.

Fortunately, we have a patch to fix this bug (thanks to Denis Steinemann, he made the
implementation for PovRay 3.5, so I have adapted these changes to release 3.6.1)

Although we have found this bug in the Windows and Linux 3.6.1 releases,
the patch was generated in Linux (using the source code release of “povray-3.6.1”).

To apply this patch, inside the parent folder of the directory “povray-3.6.1” execute:

            patch -p0 < other_side_artifacts.patch

And the “povray-3.6.1” will be patched and you will get a console output like this:

 patching file povray-3.6.1/source/lighting.cpp
 patching file povray-3.6.1/source/mesh.cpp
 patching file povray-3.6.1/source/render.cpp

We don’t know if this “hack” is enough smart to apply in the next release,
but we think that it fixes the bug (the artifacts dissapear).

Best regards and thank you very much for your great RayTracer!

289Light sourcePossible Bug3.70 RC7Very LowLowarea_illumination with light fading and scattering medi...Tracked on GitHub
0%
Task Description

with reference to http://bugs.povray.org/task/46

still some issue with area illumination and light fading when interacting with media

seems light fade is not taken into account with scattering media.
emission and absorption media seem to work fine.
occurs with all scattering types.

#version 3.7;

global_settings {
 ambient_light 0
 assumed_gamma 1
}

camera {
  location <0, 3, -5>
  look_at <0, 2, 0>
}


#declare Light = 3; // light 1 = individual lights
                   // light 2 = standard area light
                   // light 3 = area light with area illumination

#declare Fade = 1; // light fading: 1 on, 0 off

#declare Media = 1; // media 1 = scattering
                    // media 2 = emission
                    // media 3 = absorption

#declare Type = 1; // scattering media type


#switch(Light)
 #case(1)

  #declare Ls = light_source {
    0
    1/7
    #if(Fade) fade_distance 2 fade_power 2 #end
  }

  union {
   object { Ls }
   object { Ls translate .5*x }
   object { Ls translate x }
   object { Ls translate 1.5*x }
   object { Ls translate -.5*x }
   object { Ls translate -x }
   object { Ls translate -1.5*x }
   translate y
  }

 #break
 #case(2)

  light_source{
    y
    1
    area_light 3*x, z, 7, 1
    #if(Fade) fade_distance 2 fade_power 2 #end
  }

 #break
 #case(3)

  light_source{
    y
    1
    area_light 3*x, z, 7, 1
    #if(Fade) fade_distance 2 fade_power 2 #end
    area_illumination on
  }

 #break

#end


cylinder { <0, .01, 0>, <0, 5, 0>, 2 pigment { rgbt 1 } hollow no_shadow
 interior {
  media {
   #if(Media = 1) scattering {Type, 30 } #end
   #if(Media = 2) emission 2 #end
   #if(Media = 3) absorption 2 #end
    density { cylindrical turbulence 1.5 scale <1, .14, 1> }
  }
 }
 scale <.15, 1, .4> translate 4*z
}

plane { y,0 pigment { rgb .7 } }
plane { -z,-7 pigment { gradient y color_map { [.5 rgb 1][.5 rgb 0] } } }
union {
 sphere { 0,.05 }
 sphere { .5*x,.05 }
 sphere { x,.05 }
 sphere { 1.5*x,.05 }
 sphere { -.5*x,.05 }
 sphere { -x,.05 }
 sphere { -1.5*x,.05 }
 translate y
  hollow pigment { rgbt 1 } interior { media { emission 10 } }
}
287Light sourceDefinite Bug3.70 RC7Very LowLowarea_illumination shadow calculationTracked on GitHub
50%
Future release Task Description

not sure if this is something needing further work or an intended effect.

Shadows from and area light with area_illumination on seem to follow the same shadow calculation as a standard area light by giving more weight to lights near the center of the array. I would assume the shadows would be calculated similarly to individual lights in the same pattern as the array by evenly distributing the amount of shadow equally for each light. But this is not what I see.

The code sample below when rendered with scene 1 will show shadows grouped near the center from the area light with area_illumination. If scene 1 is commented out and scene 2 is uncommented then rendered, you will see evenly distributed shadows from individual lights. Area lighting with area_illumination I would assume should give a result identical to scene 2. If scene 1 is rendered with area_illumination off, the shadow calculation is exactly the same as with area_illumination on.

example images rendered on win32 XP

#version 3.7;

global_settings {
 ambient_light 0
 assumed_gamma 1
}

camera {
  location <0, 3, -5>
  look_at <0, 2, 0>
}

background { rgb <.3, .5, .8> }
plane { y,0 pigment { rgb .7 } }
torus { 1.5,.1 rotate 90*x translate 4*z pigment { rgb .2 } }
plane { -z,-7 pigment { rgb .7 } }

/*
// scene 1
light_source{
  y
  1
  area_light 3*x, z, 7, 1
  area_illumination on
}
union {
 sphere { 0,.05 }
 sphere { .5*x,.05 }
 sphere { x,.05 }
 sphere { 1.5*x,.05 }
 sphere { -.5*x,.05 }
 sphere { -x,.05 }
 sphere { -1.5*x,.05 }
 translate y
  hollow pigment { rgbt 1 } interior { media { emission 10 } }
}
// end scene 1
*/


// scene 2
#declare Light = light_source {
  0
  1/7
  looks_like { sphere { 0,.05 hollow pigment { rgbt 1 } interior { media { emission 10 } } } }
}

union {
 object { Light }
 object { Light translate .5*x }
 object { Light translate x }
 object { Light translate 1.5*x }
 object { Light translate -.5*x }
 object { Light translate -x }
 object { Light translate -1.5*x }
 translate y
}
// end scene 2

292Geometric PrimitivesUnimp. Feature/TODO3.70 RC7Very LowLowArbitrary containing object for isosurfacesTracked on GitHub
0%
Task Description

A low priority thought for the future: isosurface now only allows contained_by to be a sphere or a box. It would be more intuitive to allow the same objects that are allowed in clipped_by and bounded_by (although it probably needs to be finite). It would enable allow much faster rendering in many cases:

1) There are a lot of cases when the sphere or a box are very bad in bounding - if an object has a hole, a torus may be better, and in many cases, cylindrical bounding would help a lot.
2) Sometimes, having a too large contained_by object includes far-away parts of the iso-function, and expose large gradients that you want to avoid. If a bounding object is better, you can decrease the max_gradient and speed up the render.
3) The isosurface is usually much more expensive to calculate than any normal bounding object, so it’s an improvement even if the intesection test is not as fast as bounding box.
4) A typical case: if you use texture-like functions to make the surface realistically rough, you know almost exactly what the bounding object is - it can be the original unmodified object.
5) For isosurface terrains, a preprocessing macro could create a rough mesh-like bounding object to contain the “mountains”, thus making everything faster.
6) In case you want clipping, having the contained_by set to the same object probably avoits calculating too many intersections.

The main modification is probably that the intersections of bounding objects can be split into more than one interval - but it’s probably worth it, the isosurfaces are usually a speed bottleneck.

58Parser/SDLUnimp. Feature/TODO3.70 beta 32DeferLowallow SDL code to detect optional featuresTracked on GitHub
0%
Task Description

Some features are optional in custom builds of POV-Ray (I’m thinking about OpenEXR in particular); it would be nice to have a syntax for an SDL script to check for support of such features, so it may take some fallback action if the feature is not supported.

27OtherFeature Request3.70 beta 32Very LowLowAdd texture support to background statementTracked on GitHub
0%
Future release Task Description

Adding full texture statement support to the background statement (with a scale of 1/1) aligned with the image_map direction of an image would allow i.e. specifying an image as background easily.

65Parser/SDLFeature Request3.70 beta 34Very LowLowAdd support for vectors with functionsTracked on GitHub
0%
Future release Task Description

Being able to have functions operate on vectors would be pretty nice to have.

177Light sourceFeature Request3.70 beta 39Very LowLowAdd support for conserve_energy to shadow computationsTracked on GitHub
0%
Task Description

The following scene gives a comparison of current conserve_energy handling in standard shadow computations vs. photons.

Note how the rather highly reflective slabs fail to cast shadows, except where the photons target sphere enforces computation of shadow brightness to be done by the photons algorithm.

For more realistic shadowing without the need to enable photons, I suggest do add proper conserve_energy handling to the shadow computation code (which shouldn’t be too much effort).

global_settings {
  max_trace_level 10
  photons { spacing 0.003 media 10 }
}

camera {
  right x*image_width/image_height
  location  <-2,2.6,-10>
  look_at   <0,0.75,0>
}

light_source {
  <500,300,150>
  color rgb 1.3
  photons {
    refraction on
    reflection on
  }
}

sky_sphere {
  pigment {
    gradient y
    color_map {
      [0.0 rgb <0.6,0.7,1.0>]
      [0.7 rgb <0.0,0.1,0.8>]
    }
  }
}

plane {
  y, 0
  texture { pigment { color rgb 0.7 } }
}

#declare M_Glass=
material {
  texture {
    pigment {rgbt 1}
    finish {
      ambient 0.0
      diffuse 0
      specular 0.2 // just to give a hint where the sphere is
    }
  }
  interior { ior 1.0 }
}

#declare M_PseudoGlass=
material {
  texture {
    pigment {rgbt 1}
    finish {
      ambient 0.0
      diffuse 0.5
      specular 0.6
      roughness 0.005
      reflection { 0.3, 1.0 fresnel on }
      conserve_energy
    }
  }
  interior { ior 1.5 }
}


sphere {
  <1.1,1,-1.3>, 1
  material { M_Glass }
  photons {
    target 1.0
    refraction on
    reflection on
  }
}

// behind target object
box {
  <-0.2,0,-2.3>, <0.0,4,0.3>
  material { M_PseudoGlass }
  rotate z*1 // just to better see the reflection of the horizon
}

// before target object
box {
  <2.4,0,-2.3>, <2.6,4,-0.3>
  material { M_PseudoGlass }
  photons { pass_through }
  rotate z*1 // just to better see the reflection of the horizon
}
319Texture/Material/FinishFeature Request3.70 releaseVery LowLowAdd interior to #default directiveTracked on GitHub
0%
Task Description

When working with predefined materials, it would be useful to have something like:

#if (!Use_photons)
  #default { interior { caustics 1 } }
#end

#include "my_predefined_materials.inc"

Default medias or IORs could also be useful.

131OtherFeature Request3.70 beta 37aVery LowLowAbility to change the order of editor tabs by dragging ...Tracked on GitHub
0%
Future release Task Description

See Notepad++ or EditPad Lite for examples.

It would be nice to be able to drag tabs in the editor window to change their order, so as to group opened files together by relevance for instance.

28FrontendFeature Request3.70 beta 32Very LowLow#debug message not displayed.Tracked on GitHub
0%
Future release Task Description

The #debug message stream is only being flushed when it hits a newline character,
instead of after each #debug statement. This means that some final strings don’t show up.

#debug "This line prints,\n but this line doesn't."
138User interfaceFeature Request3.70 beta 37aVery LowLow"Rename" option in File menuTracked on GitHub
0%
Task Description

Would be great if there were a “Rename” option in the editor File menu to rename the current file name. Otherwise, you have to close the file, rename it in file manager, then open the file again, thus loosing the current tab position and undo history for the file.

140Platform-specificFeature Request3.70 beta 37aVery LowLow"Reload" option in File menuTracked on GitHub
0%
Task Description

Would be great to have a “Reload” option in the File menu to manually reload the current file from disk, discarding all subsequent changes since the last save.

206OtherPossible Bug3.70 RC3Very LowLow"Cannot open file" error when text output files specifi...Tracked on GitHub
50%
3.71 release Task Description

I created an INI file which specifies the Input_File_Name, Output_File_Name, and also the Render_File and the remaining four text outputs as double-quoted absolute paths on my disk. When I run the render, I get the following output:

Preset INI file is ‘C:\USERS\TPREAL\DOCUMENTS\POV-RAY\V3.7\INI\QUICKRES.INI’, section is ‘[512×384, No AA]’.
Preset source file is ‘D:\Ruby\POV-Rb\ini\20110521_004037_Noix.ini’.
Rendering with 2 threads.
-
Cannot open file.
Render failed
-
CPU time used: kernel 0.06 seconds, user 0.02 seconds, total 0.08 seconds.
Elapsed time 0.52 seconds.

And the render does not start. The five text output files are not even created, and where the output image should be, there is a file with extension pov-state. The render works as it should only when I remove all five lines defining the five text output files. The paths I specify for the files are correct (paths exist and files do not, no white-spaces or anything), read/write restrictions are disabled in POV-Ray. This used to work in 3.6 and does not work now in 3.7 RC3. The error happens no matter if I run the render using GUI or command line.

(Also please note that the error message is really not useful here, it does not say which file it failed to open, and not even if it was an attempt to open for read or for write.)

I’d be really glad if you could correct this as it’s a critical functionality for me. I’m generating the POV-Ray code automatically and I need to parse the text output automatically to return the status to the generator.

303OtherDefinite Bug3.70 RC7DeferVery Lowwrong bit depth reported for OpenEXR file formatTracked on GitHub
0%
Task Description

When using OpenEXR output file format, POV-Ray erroneously reports it as “24 bpp EXR” in the message output, while in fact it generates a 3×16 = 48 bpp file.

323User interfacePossible Bug3.70 releaseVery LowVery LowTooltip for render speed status bar has wrong unitTracked on GitHub
0%
Task Description

Tooltip popup for render speed always displays as “Pixels per Second” rather than matching status bar. I’ve noticed it in 3 renders so far. Most of my renders are fast enough not to see any other unit besides PPS, but I should be able to reproduce again if necessary.

133Geometric PrimitivesFeature Request3.70 beta 37aDeferVery LowSubdivision supportTracked on GitHub
0%
Future release Task Description

Someone built a version of Povray with internal support for automatic subdivision of meshes. See:

http://www.cise.ufl.edu/~xwu/Pov-Sub/

Would like to see this feature added natively to Povray.

20User interfaceFeature Request3.70 beta 32Very LowVery Lowrender window behaviorTracked on GitHub
0%
Task Description

When changing the behavior of the render window, “Keep above main”, requires restarting the POV editor to take effect. It would be nice either to get a warning to restart, or to get it to work without restarting.

300OtherFeature Request3.70 RC7DeferVery LowReference Documentation SupportTracked on GitHub
0%
Task Description

As emerged as an idea during the discussion of FS#299, an SDL / POV-Ray editor feature would be useful that allows API documentation via formal comments, e.g. in include files:

/**
 * Creates a car object.
 * @param a
 *        description of param a
 * ...
 */
#macro car(a,b,c)
  ...
#end

In addition to the ability of (auto-)generating a documentation file from such comments, an editor window feature would be convenient that allows popup display of a macro’s (object’s / parameter’s / ...) documentation section.

99Refactoring/CleanupUnimp. Feature/TODO3.70 beta 36DeferVery LowRefactor engine (front- & back-end) code for Unicode su...Tracked on GitHub
0%
Future release Task Description

Front- & Back-end code should be refactored for full Unicode support in scene files and strings.

272OtherFeature Request3.70 RC6DeferVery LowMinor change, significant speedup in cubic polynomial s...Tracked on GitHub
0%
3.71 release Task Description

While familiarizing myself with the code, I found some small changes in the solve_cubic function that lead to a significant speedup.

In my experience, “pow” is by far the slowest function in math.h and replacing it with simpler functions usually makes a tremendous impact on the speed (it’s an order of magnitude slower than sqrt/exp/cbrt/log).

solve_cubic has a “pow” function that can be replaced by cbrt (cubic root), which is standard in ISO-C99 and should be available on all systems. Separate benchmarks of solve_cubic function show this change almost doubles the speed and does not lower the accuracy. As solve_cubic is part of the solution of quartic equation, this improves the speed for many primitives. Testing with a scene containing many torus intersection tests (attached below) I still observed almost 10% speedup (Intel, 4 threads, 2 hyperthreaded cores, antialiasing on, 600×600: from 91 to 84 seconds). And this is for a torus, where a lot of time is spent in the solve_quartic and cubic solver is only called once! Similar speedup should be expected for prism, ovus, sor and blob.

I do believe the cubic solver can be done without trigonometry, but that would mean changing the algorithm, introducing new bugs and requiring a lot of testing. However, the trigonometric evaluation can still be simplified (3% speedup in full torus benchmark).

These changes don’t affect the algorithm at all, they are mathematically identical to the existing code, so the changes can be applied immediately. I also included other changes just as suggestions. Every change is commented and marked with [SC 2.2013].

This sadly does not speedup the sturm solver, which uses bisection and regula-falsi and looks very optimized already.

The test scene I used has a lot of torus intersections from various directions (shadow rays, main rays, transmitted rays).

129Parser/SDLFeature Request3.70 beta 37aDeferVery LowHash arraysTracked on GitHub
0%
Future release Task Description

Currently, array items may only be referenced by their index number (an integer). It would be nice to also be able to assign string values as array indexes, as in other scripting languages.

237User interfaceDefinite Bug3.70 RC3DeferVery LowGlitch in displaying rendered pixels and percentageTracked on GitHub
0%
Task Description

When rendering in multiple passes (radiosity in my case), the elapsed pixels and percentage, written to terminal
are first displayed like this:
Rendered 126202 of 360000 pixels (35%)
Then on the second stage the output text becomes shorter and you see
Rendered 25344 of 360000 pixels (7%)%)
The contents of the previous status are not erased, so the longer text persists (note the duplicate percentage sign and closing parenthesis). Such a glitch could have more drastic effect in rare cases.

I’m running
Version 3.7.0.RC3 (g++ 4.6.2 x86_64-unknown-linux-gnu)
compiled for the Arch Linux package.

Showing tasks 51 - 100 of 103 Page 2 of 3 - 1 - 2 - 3 -

Available keyboard shortcuts

Tasklist

Task Details

Task Editing